The bilateral diaphragm is the most

The bilateral purchase AEBSF is the most important respiratory muscle. Diaphragmatic dysfunction is an underappreciated cause of respiratory difficulties and may be due to a wide variety of issues, including surgery, trauma, tumor, and infection (1). Several previous studies have evaluated diaphragmatic motion using fluoroscopy 2; 3; 4 ;  5, ultrasound 6 ;  7, magnetic resonance (MR) fluoroscopy (dynamic MR imaging [MRI]) 8; 9; 10; 11 ;  12, and computed tomography (CT) 13; 14; 15 ;  16. However, the data of the previous studies using ultrasound, MR fluoroscopy, or CT were obtained in a supine position 6; 7; 8; 9; 10; 11; 12; 13; 14; 15 ;  16, not in a standing position. Also, while the data of the previous studies using fluoroscopy were obtained in a standing position, the data were assessed under forced breathing 2 ;  3, not under tidal or resting breathing. Thus, diaphragmatic motion in a standing position during tidal breathing remains unclear, even though it is essential for understanding respiratory physiology in our daily life. Furthermore, the evaluation of diaphragmatic motion using fluoroscopy, ultrasound, dynamic MRI, or CT has not been used as a routine examination because of limitations, including high radiation dose, small field of view, low temporal resolution, and/or high cost.

Recently, dynamic chest radiography using a flat panel detector (FPD) system with a large field of view was introduced for clinical use. This technique can provide sequential chest radiographs with high temporal resolution during respiration (17), and the radiation dose is much lower than that of CT. Also, whereas CT and MRI are performed in the supine or prone position, dynamic chest radiology can be performed in a standing or sitting position, which is physiologically relevant. To the best of our knowledge, no detailed study has analyzed diaphragmatic motion during tidal breathing by using dynamic chest radiography.

The purpose of this study was to evaluate diaphragmatic motion during tidal breathing in a standing position in a health screening center cohort using dynamic chest radiography in association with participants\’ demographic characteristics.

Materials and Methods

Study Population

This cross-sectional study was approved by the institutional review board, and all the participants provided written informed consent. From May 2013 to February 2014, consecutive 220 individuals who visited the health screening of our hospital and met the following inclusion criteria for the study were recruited: age greater than 20 years, scheduled for conventional chest radiography, and underwent pulmonary function test. Patients with any of the following criteria were excluded: pregnant (n  =  0), potentially pregnant or lactating (n  =  0), refused to provide informed consent (n  =  22), had incomplete datasets of dynamic chest radiography (n  =  3), had incomplete datasets of pulmonary function tests (n  =  1), could not follow tidal breathing instructions (eg, holding breath or taking a deep breath) (n  =  18), or their diaphragmatic motion could not be analyzed by the software described next (n  =  4). Thus, a total of 172 participants (103 men, 69 women; mean age 56.3 ± 9.8 years; age range 36–85 years) were finally included in the analysis ( Fig 1). The data from 47 participants of this study population were analyzed in a different study (under review). The heights and weights of the participants were measured, and the body mass index (BMI, weight in kilograms divided by height squared in meters) was calculated.