Tag Archives: pmsf

br Imaging Protocol of Dynamic Chest Radiology ldquo Dynamic

Imaging Protocol of Dynamic Chest Radiology (“Dynamic X-Ray Phrenicography”)

Posteroanterior dynamic chest radiography (“dynamic X-ray phrenicography”) was performed using a prototype system (Konica Minolta, Inc., Tokyo, Japan) composed of an FPD (PaxScan 4030CB, Varian Medical Systems, Inc., Salt Lake City, UT, USA) and a pulsed X-ray generator (DHF-155HII with Cineradiography option, Hitachi Medical Corporation, Tokyo, Japan). All participants were scanned in the standing position and instructed to breathe normally in a relaxed way without deep inspiration or expiration (tidal breathing). The exposure conditions were as follows: tube voltage, 100 kV; tube current, 50 mA; pulse duration of pulsed X-ray, 1.6 ms; source-to-image distance, 2 m; additional filter, 0.5 mm Al + 0.1 mm Cu. The additional filter was used to filter out soft X-rays. The exposure time was approximately 10–15 seconds. The pixel size was 388 × 388 µm, the matrix size was 1024  × 768, and the overall image area was 40 × 30 cm. The gray-level range of the images was 16,384 (14 bits), and the signal intensity was proportional to the incident exposure of the X-ray detector. The dynamic image data, captured at 15 frames/s, were synchronized with the pulsed X-ray. The pulsed X-ray prevented excessive radiation exposure to the subjects. The entrance surface dose was approximately 0.3–0.5 mGy.

Image Analysis

The diaphragmatic motions on sequential chest radiographs (dynamic image data) during tidal breathing were analyzed using prototype software (Konica Minolta, Inc.) installed in an independent workstation (Operating system: Windows 7 Pro SP1; Microsoft, Redmond WA; CPU: Intel Core i5-5200U, 2.20 GHz; memory 16 GB). The edges of the diaphragms on each dynamic chest radiograph were automatically determined by means of edge detection using a Prewitt Filter 18 ;  19. A board-certified radiologist with 14 years of experience in interpreting chest radiography selected the highest point of each pmsf as the point of interest on the radiograph of the resting end-expiratory position (Fig 2a). These points were automatically traced by the template-matching technique throughout the respiratory phase (Fig 2b, Supplementary Video S1), and the vertical excursions of the bilateral diaphragm were calculated (Fig 2c): the null point was set at the end of the expiratory phase, that is, the lowest point (0 mm) of the excursion on the graph is the highest point of each diaphragm at the resting end-expiratory position. Then the peak motion speed of each diaphragm was calculated during inspiration and expiration by the differential method (Fig 2c). If several respiratory cycles were involved in the 10 to 15-second examination time, the averages of the measurements were calculated.

Figure 2. Representative sequential chest radiographs and the graphs of excursion and peak motion of the diaphragms obtained by chest dynamic radiography (“dynamic X-ray phrenicography”). (a) Radiograph of the resting end-expiratory position. (b) Radiograph of the resting end-inspiratory position. (c) Graph showing the vertical excursions and the peak motion speeds of the bilateral diaphragm. A board-certified radiologist placed a point of interest (red point) on the highest point of each diaphragm on the radiograph at the resting end-expiratory position (a). These points were automatically traced by the template-matching technique throughout the respiratory phase (double arrows in b) (Supplementary Video S1); red double arrow indicates the vertical excursion of the right diaphragm and blue double arrow indicates that of the left diaphragm. Based on locations of the points on sequential radiographs, the vertical excursions and the peak motion speeds of the bilateral diaphragm were calculated (c). The lowest point (0 mm) of the excursion on the graph indicated that the highest point of each diaphragm was at the resting end-expiratory position (ie, null point was set at the end-expiratory phase) (c). (Color version of figure is available online.)Figure optionsDownload full-size imageDownload high-quality image (305 K)Download as PowerPoint slide

br Discussion br Our study

Discussion

Our study determined the average excursion of the diaphragms during tidal breathing in a standing position in a health screening center cohort using dynamic chest radiography (“dynamic X-ray phrenicography”). These findings are important because they provide reference values of diaphragmatic motion during tidal breathing useful for the diagnosis of diseases related to respiratory kinetics. Our study also suggests that dynamic X-ray phrenicography is a useful method for the quantitative evaluation of diaphragmatic motion with a radiation dose comparable to conventional posteroanterior chest radiography (22).

Our study demonstrated that the average excursions of the bilateral pmsf during tidal breathing (right: 11.0 mm, 95% CI 10.4 to 11.6 mm; left: 14.9 mm, 95% CI 14.2 to 15.5 mm) were numerically less than those during forced breathing in previous studies using other modalities 2; 7 ;  8. Using fluoroscopy, Alexander reported that the average right excursion was 27.5 mm and the average left excursion was 31.5 mm during forced breathing in the standing position in 127 patients (2). Using ultrasound, Harris et al. reported that the average right diaphragm excursion was 48 mm during forced breathing in the supine position in 53 healthy adults (7). Using MR fluoroscopy, Gierada et al. reported that the average right excursion was 44 mm and the average left excursion was 42 mm during forced breathing in the supine position in 10 healthy volunteers (8). The difference in diaphragmatic excursion during tidal breathing versus forced breathing is unsurprising.

Our study showed that the excursion and peak motion speed of the left diaphragm are significantly greater and faster than those of the right. With regard to the excursion, the results of our study are consistent with those of previous reports using fluoroscopy in a standing position 2 ;  3. However, in the previous studies evaluating diaphragmatic motion in the supine position, the asymmetric diaphragmatic motion was not mentioned 7 ;  8. The asymmetric excursion of the bilateral diaphragm may be more apparent in the standing position, but may not be detectable or may disappear in the supine position. Although we cannot explain the reason for the asymmetry in diaphragmatic motion, we speculate that the presence of the liver may limit the excursion of the right diaphragm. Regarding the motion speed, to the best of our knowledge this study is the first to evaluate it. The faster motion speed of the left diaphragm compared to that of the right diaphragm would be related to the greater excursion of the left diaphragm.

We found that higher BMI and higher tidal volume were independently associated with the increased excursions of the bilateral diaphragm by both univariate and multivariate analyses, although the strength of these associations was weak. We cannot explain the exact reason for the correlation between BMI and the excursion of the diaphragm. However, a previous study showed that BMI is associated with peak oxygen consumption (23), and the increased oxygen consumption in an obese participant may affect diaphragmatic movement. Another possible reason is that lower thoracic compliance due to higher BMI may cause increased movement of the diaphragm for compensation. Regarding the correlation between tidal volume and excursion of the diaphragm, given that diaphragmatic muscle serves as the most important respiratory muscle, the result is to be expected. Considering our results, the excursion evaluated by dynamic X-ray phrenicography could potentially predict tidal volume.